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AN APPROXIMATIOU FOR THS DlSTiUBUTIOU 0? THE WILCOMON 

ONE-SAMPLE STATISTIC _ 
D D Cv 

By VlMton K. Chow1 and J. L. Hodge», Jr. rrrip3rr>'"rn WSffi 

Unlvorslty of Caltfornt«, Berkeley   ,  "ov 14 ,*'J 

Jilli'lSEDÜlBlü 
Introduction B -^^ 

In 19^3 Frank Wllcoxon uuggcsted a statistic that may be used 

to test the location of a continuous symmetric population. Without 

loss of generality, we suppose that the null hypothesis puts the 

center of syometry at zero, and that X|,X2,
,,,,X  are observations 

drawn from the population. Rank these observations in order of 

increasing absolute value, and attach to each rank the sign of the 

coxirocpondlng X.. There are 2n possible patterns of signs, and 

under the null hypothesis each pattern has the same probability —• 
2n 

Let   U   denote the sum of ehe ranks with negative sign.    A small 

value of   W   constitutes evidence that the population center lies 

to the right of zero. 

The Wllcoxon test, based on   W,    is attractive in several 

waya.    The statistic Itself is easy to compute.    Its null distribu- 

tion, which requires only the counting of the number,  say    #(w), 

of sign patterns giving   W >* w,    provides exact significance 

probabilities without requiring any assumption of a parametric 
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form for th« population (see Section 2). In normal eacples, the 

Wilcxon t^et he« the high efficiency 3/* - .933 In the Unit 

na n-* M , relative to the t-teet, and Klotz found In 1963 

[3] that the efficiency la also high for normal sample» of alzoa 

3 ^ n « 10 provided a la not too email. For populations elmller 

to the normal but with heavier tails, which la perhapa a typical 

Blnuatlon in practical work, the large-sample efficiency of 

Wilcoxon relative to t can be arbitrarily greater than one. 

Becauae c.f the importance of the Wilcoxon teat, it la 

desirable to be able to find out something about the distribution 

of W in varioua drcumatancea. For example: Does the high 

efficiency in the normal case hold not only for n 3 10 and 

n -* w, but also for moderate intermediate values?  Does the 

asymptotic insenaitivity of W to heavy tells hold also when n 

is small? How robust is the significance probability against 

moderate departures from symmetry? 

For each of these and many similar questions, we need to find 

the distribution of W under the assumption that X.,X •••,X 

are drawn from a population with distribution G which la not 

aynsaetrlc obout zero. As reviewed below, this distributional 

question has not proved easy. We offc.- here a method of approxima- 

tion which seems to be useful, at: least in some cases, and then 

use it to throw some light on the specific questions asked above. 

—■ 
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It It Mty to see that what la aaid also applies, with appro- 

priate nodi fleet Ions, to another Lnportanc use for the Wllcoxon 

test-statlatlc—to test the absence of treatment effect In a 

matched-pairs design. In that case, X. represents the observed 

difference In response between treated and control subject In the 

1th pair. Thu random assignment of treatments gives W Its null 

distribution. If we Imagine a population of pairs In which X 

haa the distribution G, the questions of power and robu&cness 

may also be asked In this case. We shall however for simplicity 

couch our work In terms of the one-sample problem. 

2.  The null distribution 

Under the null hypothesis, P(W - w) « ^(w)/2n. The range 

of W Is from 0 to w - *n(n+l) , and the distribution Is 

symmetric about ^n(n-fl). The function §  , which la needed In 

our approximation, may be computed by means of recursion on n. 

Tables J and K of [2], provlie all values of #(w)  for 

n ä 12; and for w - n + 30 where n ranges between 13 and 20, 

Inclusive. For future reference, we show the values of ft    for 

n - 10 in Table 1. For w ^ n, values of # can also be read 

from the partition function q given in Table 24.3 of [7]* 

In case of large n, and w > n, the Edgeworth approximation 

leads to the approximation 

■MMMM 
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(2.1) #(w)  - 2n . P(W - w) 

- 2n • 9(«H1 - 3(u2 - 6u + 3)/10'(2n+l) 

+ 3(u3 - 15u2 + 45u - 15)/3t;>n2 

+ 9{u   - aBu3 + 210u2 - 420u + 105)/Ö00 n2)/a 

2 2 
where a   - n(n+l) (2n+l)/4 , z - [w - ^ n{n+l) ]/o and u - z . 

Formula (2.1) has relative error of order 1/n , and Table 2 

shows Chat it gives excellent results at the limits of the exact 

tables described above. 

3.  Distribution of W by numerical integration 

Numerical integration gives a straightforward method of 

finding the distribution of W for a given G. Suppose the 

continuous G has a density g, which would be so in nearly all 

cases of interest. By independence, the joint density of the 

sample is g(x,)g(x2) •••g(x ). The n-dimensional space may be 

divided into 2  regions corresponding to the 2  patterns of 

signs for the absolute values. Evaluation of the integrals of 

this Joint density over these 2n regions will give probabilities, 

appropriate sums of which will give the distribution P(W - w). 

An effective iterative scheme for evaluating these integrals was 

devised by Klotz [7], who in 1963 published results for normal 

samples with 5 ^ n ^ 10. We are grateful to Professor Klotz for 

supplying us with his original results, only part of which have 

mmm Mi 
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ho«n published. His values for n - 10 and (|f(l,l) are shown 

in the third column of Table 4. Professor Klotz points out that 

the sum of his 1024 integrals is 1.0003, indicating that the fourth 

decimal place is not quite reliable. The Klotz iterative fomulas 

wore used by Arnold [1] in I963 to obtain results for t-dlstrlbutiont 

with the some sample sizes. 

While the integration approach is straightforward, it rapidly 

becomes very expensive as n increases. Not only does the number 

of regions increase exponentially with n, but even worse is the 

increase in dimensionality.  (The difficulty of accurate integration 

in higher-dimensional space is discussed in detail by Milton [6] 

for the related two-sample problem.)  If one wishes to survey a 

wide range of sample sizes and distributional shapes, integration 

does not appear to be a practical approach. Experience with other 

tests suggests that some sort of approximation is 1 kely to be 

helpful as a supplement to the small-sample calculation. Fortu- 

nately, it is not difficult to find moments of W for use with 

approximations to its distribution. 

4.  Low-order moments of W 

It is well known that W can be expressed as a sum of indi- 

cators, which leads to expressions for its moments in terms of 

certain probabilities. VJe will now record convenient formulas for 

the first three moments: 

(4.1) E(W) - [^ qj • (n-1) + p] • n , 

mm 
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4.2) 

4.3) 

wher« 

4.4) 

4.6) 

4.7) 

4.8) 

4.9) 

4.10) 

and 

4.11) 

4.12) 

4.13) 

and 

(4.14) 

Viir(W) - Uni23.(n-2)  +n22](n-l)  + n2l)n . 

^(W) -<([n»34 (n-3)  +in33](n-2)  ^^^(n-l)  + ^ » n 

»2! - P(l-P)» 

"22 

B,23 

■31 

,n32 

"33 

in34 

(p-q^^Sq^l-q^^. 

q2 - <£ 

p(l-p).(1.2?), 

6q"  (1-2?^)   - 6pq1(l-q1) 

+ 3p1,(l + 3q1)   + ^.(l-q^ -(l^^ 

6qJ + 3q2 (2^^^   + 6q[  (p^j) 

+ qj (12p +8q1 - 3)   +p3. 

q3 + 3r - Sq^g + 5qJ. 

p - P(X1 < 0)  - G(0) 

qk-/!w s(x)Gk{-x)dx 

q^-P^^,...^^.^, X^O) 

-/!L Ck(.x)g(x)dx 

q^ - PÖCg^,«**^^ <  -X1. X! > 0) 

-/-Gk(-x)g(x)d::, 

(4.15)        h(x)  - g(x)G{-x), 

t^atma^^m, . 



(M6)       H(x) - ;*w h(u)du, 

(M7)       r - rmm h(x)H(-x)dx. 

Notice that only unlvarlate numerical integration is required by 

:.ny of theae fonoulas    and that all values of   n   are dealt with 

simultaneously.    We give as Table 3 the values of the coefficients 

for the first three moments for the normal distribution Jf{\ifl) 

:.ith unit variance and expectation   n  ,    for some of the values 

of   \i   considered by Klotz. 

5.     The normal approximation 

It follows from the work of Hoeffding [4] that, as   n-* <» , 

inTniH    Wil1 tend to the stondard normal distribution.    At 

first glance, one might hope that this fact, combining with small- 

sample integrations by the method of Klotz, would solve the 

problem.    Unfortunately, it appears that the normal approximation 

is still very bad at the practicable limits of the integration 

approach.    This is illustrated in the fourth column of Table 4, 

for a sample of   n - 10   drawn from  ^/(l.l).    The results of 

Klotz1s integrations are compared with this normal approximation 

(with continuity correction)   for    E(W)   ■ 5.125 785   and   Var  (VJ)  - 

23.8^7 590, which are the moments found by using Table 3 and 

formulas (H.l)  and (4.2).    The maximum error of the cumulative 

form of the normal approximation is    -0.1004  . 

f 
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The reason for the poor results is apparent if one glances 

at Figure 1, which shovrs the distribution of W as a histogram. 

The shape is quite unJiko that of a normal curve, and indeed, 

without Klotz's work, the mere values of E(W) and S.D. (W) 

could have told us that this must be so. Since W is nonnegative, 

it cannot be nearly normal unless E(W)  is (say) at least 2.3 

times as large as S.D. (W). From (^.1) and (4.2), it can be 

shown that this will not occur until n reaches 67. The same 

general result is found for other population shapes than the 

normal. Therefore, this reveals that the normal tendency of W 

does not take effect uniil n is much larger than can practically 

be dealt with by integration. It is of course possible that some 

other "smooth" approximation may be found to give much better 

results. However, inspection of Figure 1, and similar figures 

for other cases, does not encourage one to hope for good small- 

sample results with approximations based on Edgoworth expansions 

or on the Pearson family of curves. We somehow need a method of 

approximation that deals with the irregularities of the null 

distribution oc   W. 

6.  The average probability method 

Figure 1 shows that, for the case of a sample of 10 from 

,-/r(l,l), P(W - w)  tends to decrease as w increases, but in a 

rather irregular way. This irregularity can be explained by the 

irregularity of #(v)  (Table 1). Thus, for each of the values 

w " 0, 1 and 2,  there ie only one sign pattern, and these 
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Flb'uro 2:    Average probabllltlea of W from  «#(1,1), n • 10 
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probabilities decrease omoothly.   AC   w • 3,    there are however 

two sign patterns, which "explains" why    P(W • 3)    exceeds   P(W-2)I 

rather than continuing to decline. 

Let us consider    P(W - w)/#(w)t    the average probability of 

the    #(w)    sign patterns corresponding to   W • w.    As Figure 2 

shows, these average probabilities do decrease in a rather smooch 

way,  at something like an exponential rate.    This suggests that 

we write 

(6.1) L(w)  - loge[P(W - w)/#(w)], 

and Figure 3 confirms the very smooth behavior,  at least In this 

example, of   L   as a function of   w. 

We now have an idea for a method of approximation to the 

distribution of   W.    The values of   L    at the two extreme points 

are known:    W - 0    if and only If all the    n   observations are 

positive, hence, we have   L(0)   - n log    (1-p),     since    #(0) - 1 

and the probability of a positive observation is    1-p    by (4.11) ; 

similarly,    L(wM)  - n log   p .    By assuming that   L(w)    behaves 

smoothly between these terminal values, v/e can interpolate some 

appropriate smooth function,  say   L1.    If    L1     is close to   L, 

then    P (w)  - #(w)»e .^w'    will be cloae to    P(w).    Various methods 

of fitting   L1     to    L    are possible.    We have investigatdd the use 

of the known moments of    W   discussed in Section 4.    The simplest 

functions with the required values at    w - 0    and   w..    are the 
n 
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polynomial!.    Of course,  some other smooth functions might be 

more appropriate In some cases.    We shall however couch our dis- 

cussion In terms of polynomial approximations which give satis- 

factory results for all cases we are going to consider In the 

ncact few sections. 

We shall denote by   L. ,    the polynomial of degree    k, fitted 

to   L   by the requirements  (1)   that   ^(O)  ■ L(0)     and    Lk(w
M)  " 

L(WU),    and (2)   that the corresponding probabilities P. (w)  - 

#(w)e have the same moments ao   W   of orders    0,l,***,k-2. 

We thus impose    k + 1    conditions, corresponding to the    k + 1 

coefficients of a polynomial of degrees    k. 

First, let us consider the linear interpoland,    Lj(w) ■ 

L(0)  + a.w ,    where 

(6.2) a1 -  [L(wM)   - L(0) ]/wM - iL log ^ . 
M 

Hovfcvcr, this interpoland will give probabilities VA*') which 

In general do not add up to 1. A proper distribution requires 

uie of the quadratic interpoland, which we shall write as 

L2(w)   m Lj (w)  + n2 • w •   (wM - w) . 

Clearly,    Pp(w)     in monotonely Increasing in    a  ,     so there 

exists a unique value of    a      for which    ^Pp(w)  <■ 1.    Since the 

veluß of    p   dätermlnes    L,,    which in turn determines    a     end 

hence    L0.    For any given    n,  ?2    is a one-parameter family of 

dlstributioas,  governed only by the parameter    p,    regardless of 

w!iat the particular underlying diotribution   G    is. 



u 
Table 3 shows, for n - 10 and for several values of p, 

Che coefficients of L., and the expectation ZwP2(w) of the 

rebulting distribution P«.  In any given case, one may compare 

this expectation of the approximating P. with the true expectation 

E(W), as glvm by (4.1), in order to help in judging the adequacy 

of the approximation P?. 

As an illustration, let us consider a sample of 10 from 

.^(1,1). From a normal table one reads that p - .1337* Hence, 

from (6.2), a. - -.303321, also a  is uniquely determined, 

giving a ■ .001938. The resulting probabilities P. have 

errors as shown in column 3 of Table 4. P  is substantially 

better than the normal approximation, having a maximum error only 

12 percent as large. Of course, we know the error of ?2   only 

because the Klotz computations are available. However, even 

without these we could have considerable confidence in P? 

because of the readily available moment check.  Interpolating 

the fifth column of Table 4 shows that the expectation of P? 

is 5.04, which is fairly close to the correct value E(W) - 5.13 

obtained from (4.1). 

In seeking a still better approximation, it is natural next 

to modify L  by adding a cubic term, to obtain an approximation 

with the correct expected value, say 

L3(w) - L2(w) + a3.w(wM-w)»(w - b3) . 
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The proper values of   a.    and   b..    are determined by the require- 

menta that   IPJw)  • 1    and    iwP3(w)  - E(W),    which may be found 

numorlcally by Inspection.     (We hive not proved the existence 

and uniqueness of   a^   and    b^,    but conjecture these properties 

will hold in all reasonable cases.    At least in all of our trials 

the convergence to the fitted values proceeded smoothly and 

without difficulties.) 

The search for   a^    and    b.    is aided by knowing where to 

start.    Let us suppose that the    P     approximation is a good one, 

so that only a small cubic correction is needed, and accordingly 

a.    is small.    Then,  to a first approximation, 

V1^ " P2^  + a3 P2^,W^WM " w)*(w " b3). 

and this approximation,  for each   W ■ w,    h«»s error due to 

replacing    e ^w'    by    1 4- ^(w)    for small    ^(w),    where 

A(w)  ■ a,  • w •  (wM - w)   •   (w - b-).    If we now impose the 

requirements that    2P2(w)  - ZP3(w)  - 1    and   2wP3(w)  - E(W), 

we find these approximation values for   a,    and    b~: 

b3 " Sl/S0'      a3 " CE^  " ZwP2^S2 " b3Sl^ 

where    S.   - Zw F0(W) »W« (W,. - w).    Table 5 gives the values of 
* * 

b.. and S? - b^S., which will indicate in any given case a good 

point for stamlnp, the search for a, and b^. We have written 

a program for the automatic conduct of the search. Once a. 

and b. are found, it is easy to compute L, and hence P-. 

mi 
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T«h1» 'I shows eh« results of this method In our norual wxttmpU 

Here, a* - 0.000 013 3183, b* - 9.0370, and the searched 

a. - 0.000 012 9195,    b, - 9.1249, and the agreement between 

l\ and the Klotz values Is better than that of P.. 

The distribution P  will by definition have the correct 

values at w - ') and at w - w.., and the correct expectation. 

The quality of such sn approximation may be Judged by comparing 

2        p 
CW  with £w'P.(w) or the corresponding variances.  In this case, 

the variance of P. is 24.73, where the correct variance of W 

is 23.85. If the agreement it not as good as desired, one may add 

a quartic term to L., getting 

^(w) ■ l^w) +a4.w.(wM - w).(w - bJj)»(w - cu), 

where    a., b., c.    are determined by the requirement» that    P. 

have the correct moments of orders    0,  1,  2.    In the cases we 

have examined,  the quartic correction tends to be small,  and to 

p. good approximation with error discussed above, we obtain the 

trial coefficients given by: 

2S1     "  2S2SG 

117 lip ^    «       •       •       •    i. 
+ (S0.S3):J - 3(S2.S1)2 - 6S0 S1 S2 S3]1) 

c4 - [s2 - b^ • S^/CSj - b4 . s0) 

♦     I »    •     I 
aj -  (EW2 - Zw2P3(w))/(S2 -  (b*+c4)S1 + b4 c^  S0) 

tm^imimimmmM 
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whore S. • Iw i» (w) • w • (w - w). Unlans one if lucky, the 

required moment • correipondlng to this set of trial coe£ fie lent • 

need to be adjuited. One may make slight adjuotments If theee 

values do not give P^ with moments sufficiently ''.ose to the 

true values as found by the formulas of Section 4. 

The approxlnuitlons P., P^» Pj. are successively more 

accurate, as one night hope. The maximum absolute errors are 

0.0120, 0.0083, and 0.0047 respectively. The root mean square 

errors for 1 * w 3 20 decrease also, being .0037, .0041, .0027. 

In principle, one might now use E(vr)  to add a qulntlc 

term, but If the method Is working well for the case at herd, 

the agreement between P. and P., and between EW  and 

Zw P. (w), should Indicate that the P. approximation will 

serve. There Is an intuitive reason for thinking that P. Is 

a natural stopping point. Since both log P(w) and log #(w) 

are nearly quadratic in w for large n, it follows from (6.1) 

that L(w) will also be nearly quadratic in the Interval near 

E(W)  containing most of the probabilities. For a polynomial to 

accord with this shape, and also have specified values at the 

"distant" points, w ■ 0 and w   it requires five degrees of 

freedom of a quartic. Thus, one may expect the approximation P. 

to agree with the asymptotic normal approximation in large sanplca, 

whereas P. could not be in general expected to do this. 

s 

■i^^^M—^—■—   II 
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Table 4 shows, for our normal «cctaple, Che excel I» nc 3wre;..<-. 

of ?K with the results of the Klotz computations, with the 

maximum error of P^-cumulatlve is 0.00^7. In addition, 

£vrP.(w) - 642.1*183, so that P. has standardized third moment 

1.211, compared with the value 1.268 for W. This shows that the 

skewness of this approximating P.  seems to be about right. While 

computations like those of Klotz will seldom be available for a 

check, this third-moment check can be made in general, as can the 

reassurance of finding P^ close to P.. 

We have also tried out the average-probability method on 

the computations of Arnold, for a sample of size n - 10 from 

a re-scaled t-distribution with four degrees of freedom, and for 

shift p. - 1.0, By examining the probabilities published by 

Arnold, we concluded that for w ^ 3, they appear to have a 

smooth behavior. Hence, we applied our method to approximate 

distribution ot W for 3 " w * S5. For w < 3, one can always 

ure the formulas stated in Section 7. The results are again good 

for P^, although not as good as in the normal example. The 

reason appears to be the exceptionally heavy tail of t. .  The 

maximum difference between P^ and P.  is 0.0017, where the 

maximum error of the Pj-cumulative is 0.008 from Arnold's results. 

It is also necessary to point out situations when our 

approximation does not seen to wer1 too well. One intuitive case 

we have at hand is t, with sr.rple size n > 10 and shift |i"1.0. 
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After reviewing lone of Che probablllcles published by Arnold, 

we realize that, with its extrctr.cly heavy tall, the assumption we 

made for our method, that L behaves smoothly between the two 

extremes, is not satlsflod. As mentioned by Arnold, there is 

almost a complete breakdown In order for the case of i degree 

of freedom In t-dlstrlbutlon. For Instance, with w • 9, #(9) -Ö, 

there is one dominating factor corresponding to the sign pattern 

(+, +, 4-, +, +, +, +, +, -, +) with probability 0.0498; when 

w " 10, #(10) - 10, with dominating probability 0.1793, and 

when w > 11, #(11) ■ 11, the dominating probability Is only 

0.0238. This Irregularity of course lies on the fact that t, 

has an extraordinary heavy tall, and this leads us to believe that 

the average-probability method will not perform well In such cases. 

7.  An additional check 

While computations by numerical Integration of the entire 

distribution of W Is seldom available and not easily done, it 

is not too difficult to get correct probabilities for small values 

of W. One can easily express these probablllcles as univariatc 

inccgrals: 

(7.1) P(W - 1) - n /^ g(x).[l - G(-x) f1 dx 

(7.2) P(W - 2) - n(n-l) J0
mm  g(x).[G(-x) - G(0) ]• [1 - G(-x) f^dx 

(7.3) P(W3)-n^"ina"2Vlg(x)'[G(-x)-G(0)3?.[(l-G(-x)]n-3 dx 

+ n(n-?)/°M e(>0 [0(0) - G(x) ]-[l - G(-x) ]n"2 dx. 
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u« have found by numerical Integration for the case of Table k 

that 

P(W - 1) - .11365 

P(W - 2) - .07501 

P(W - 3) - .10360 

which verify the results obtained by Klotz. 

The probabilities for small w can be used to check on the 

adequacy of the L-approximations. Alternatively, they can be used 

to permit L to be interpolated between w - 3 and w  rather 
n 

than w - o and w... As in the t.-case of the preceding section, 

this is likely to be useful in irregular situations. 

In a similar way, P(W - w)  for 4 * w * 8 can be computed 

by bivariate integrals, and then L could be interpolated between 

w ■ 8 and w ■ wM. n 

8,  Normal saropleo of moderate aize 

The Pitman analysis    shows that, with very large normal 

samples, the relative efficiency of the Wilcoxon test to the 

t-teat is 3/7T " 0.955. Based on his computations for 5 * n S lo, 

Klotz found that efficiencies lie in the range of (.955, .986) 

for ,01 i a * .10 . (The efficiencies were lower for very 

B'anll   a.) Those facts have led to a widespread belief that the 

efficiency of the Wilcoxon test is high in all normal cases when 

the value of a is not too small. There has of course remained 

the pocsibilicy that the efficiency was less good for moderate 

values of n than for values at either extreme. 

MHMM 
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To throw lome light on this question, we have applied the 

average-probability method to a sample of n - 20 from  («73, 1). 

This computation requires #(w)  for n • 20 recorded in Table 2. 

We found that L(0) - -5.139 885, L(210) - -29.688 965, 

a1 - -0.116 900 38,   a2 - -.000 135 9136,  a. - -.000 000 2592, 

b3 - 40.0236,  a^ - -.000 000 003 484, b^ - 26.6508, 

Cu  • 62.8990. Table 6 shows excerpts from the cumulative forms 

of the distribution P- and P.. The good agreement of these 

approximations, together with the satisfactory agreement of the 

standardized third moment for P. (0.644) and W(0.664) lends 

confidence to the results. 

As an additional check, we ho/e evaluated (7.1), (7.2) and 

(7.3), with these results: 

P(W - w) 

w by integration approx. P^ 

1 0.0050 .0051 

2 0.0043 .0044 

3 0.0074 .0076 

From this P^-cpproxiiactlon, we find the following efficiencies 

for n - 20: 

- - ■ iMM 
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T 
ß ß for t-tesc Relativ« e££. 

w   P f7 ^ w)  PA[W > w]  n - 19  n - 20    of W to t 

45 0.01198 0.20991* 0.21888 O.I9289 O.9672 

52 0.02422 0.12760 0.13251 0.11415 0.9634 

61 0.05270 0.06153 0.06335 0.05310 0.9588 

66 0.07682 0.03938 0.04032 0.03328 0.9567 

69 0.09467 0.02972 0.03049 0.02482 0.9568 

9.   The Wtlcoxon diotrlbutlon In a heavy-tailed case 

Many statisticians consider that actual distributions fouo* 

in practical work tend to resemble a normal, except that in some 

cases their tails are heavier than the very exiguous normal tails, 

corresponding perhaps to an occasional gross error. Such a 

departure from the normal shape can increase the population 

variance substantially, to the severe detriment of the large- 

sample performance of the t-test. On the other hand, this sort 

of departure from normality will have very little effect on the 

integral of the square of the population density, which governs 

the large-eample performance of the Wilcoxon test. Accordingly, 

the Pitman analysis shows that Wilcoxon can be substantially 

superior to t in such cases. 

This is of course pertinent only when the sample is 
* 

nufficlently large.     If the sample is small,   it would seem quite 

likely that none of the sample values will come from the talia, 

so that in effect one is sampling from the "normal" part of the 
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population. In that case the t-test should be superior. It is 

natural to pose a question: how large roust the sample he before 

the heavy tails can exert their baleful effect on t reletive 

to W? An investigation of this important question has been 

hindered by the fact that it is difficult to calculate the po\^r 

of either test. The average-probability method permits one to 

obtain a reasonably good approximation for the power of W. 

We present some results, partly in the hope that they may stimulate 

someone to think of a good way to do the same for the t-toat, so 

that the comparison may be completed. 

Let us take as our heavy-tailed distribution a Tukey model 

consisting of a blend of 97$ from J/{ltl)    and 3%    from a normal 

with the same expected value 1, but with standard deviation 4. 

For a sample of n ■ 10 from this distribution, we find that 

L(0) - -1.814 432, L(55) - -17.961 627. a1 - -0.293 585 36, 

a2 - -.001 785 78, a « 0.000 049 611 2,  b3 - 9.8276 

a^ - -.000 003 6214, b^ - 6.2444 and c^ - 18.6004. Table 7 

chows the cumulative forms of the distributions of P-, and P.. 

Agreement is again good, also for the standardized third-moment 

check, with 1.122 for P^ and I.I56 for W. 

As an additional check, we uncd the integrals of Section 7: 

F(W * w) 

w by Integration by P, 

1 

2 

3 

.1043 

.0690 

.095^ 

.1058 

.0700 

.0942 
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All checkt Indlcfttfc that our P^-approxlration is performing well 

in this heavy-tailed case. 

With this blending of a Tukey model, the number of gross 

errors, G, is binomial (n - 10, p • 0.03) where P(G - 0) - 

0.737 ^2k,    In other words, it may be quite likely, with probability 

0.737 ^24, that all the 10 sample values will be from pure ^(1,1), 

for which case we have discussed in Section 6. One interesting 

point here is that, by subtracting this out, we are able to get 

the conditional distribution of W given G > 0. That is, 

knowing that some gross error occurred in this sample of 10, 

P(W ■ "l0 '  0) * W57S[Ppure^(l,l) (W " w) 

- .737 *<» • P,, (W - w) J. 

10.      Robuatness of the Wtlcoxon test against asymmetry 

The Wllcoxon one-sample test is intended to test the location 

of the center of symmetry of a symmetric population.    Any actual 

population will be asymmetric, at least to some extent.      It io 

accordingly important to know how robust the test Is against 

asymmetry.    That is, we need to find out how the actual significance 

pvobabillty compares with Lhs nominal value given by the null 

distribution,  in case the population is centered at zero but 1c 

moderately asymmetric.    Ihe average-probability method can throw 

some light on this important question. 

Before this problem can be tackled,  it is necessary to 

docidc what in meant by the "center" of an asymmetric population. 
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The concept of center Is naturally related to the statistical 

tool being used. If one works with the sample mean, then the 

population mean Is the natural center, at least with large samples; 

similarly, the sample median calls for the population median; and 

so forth. What Is the "Wllcoxon center" of a population? 

Let us seek to define center In such a way as to promote 

the robustness of the significance probability. That is, we 

want the distribution of W, when the population is "centered" 

at 0, to reseable the null distribution In Section 2. This 

distribution is (except for very small n)  nearly normal, so 

presumably W will continue to be something like normally dis- 

tributed for mildly asymmetric populations. To keep the distri- 

bution of W nearly the same, we try to keep its location and 

scaling nearly the same. 

In the symmetric case, if the null hypothesis is true, then 

q. - ^ and p ■ i,  so that 

E(W) - ß q^n-1) + p] . n - * n(n+l). 

One may seek to define center in general so that, under the null 

hypothesis, one will continue to have q, ■ i and p a £, and 

thus W will continue to be centered at £ n(n-fl), as in the 

symmetric case. Unfortunately, it tumc out that this is in 

general impossible:  if ve locate the population so that q. » ^, 

t.hon p will differ at least slightly from ^,  and vice versa. 
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At le4ft '/«hen u is large, the dominant term of E(W) is the 

one involving q.. We are led to the idea of defining center so 

that, when the population is centered at 0, q? a &• Recalling 

that q. is the probability that X, + Xp < 0 or equivalently 

that ^(x, + X2) < 0, we see that this event will have probability 

*  if the median of the distributicn of ^(X, + XJ  is located 

at 0. We ere led to define: The Wilcoxon center of a population 

is the median of the moan of two observations therefrom. We note 

that in the symmetric case, this definition yields the conventional 

center of symnetry. 

In general, with this definition, p will differ slightly 

from £ for moderately asymmetric populations, and hence E(W) 

will not quite coincide with ^ n(n+l) , though it will be so 

very near if n is large. However, the only way to force 

E(W) ■ ^ n(n+l)  would be to have the definition of the center 

of the population depend on the size of the sample, and that 

would be peculiar. 

Let us illustrate these ideas. Consider the chi-square 

distribution with 10 degrees of freedom, depicted in Figure 4. 

This population has the sort of moderate ckewness, v/ith standardize, 

third moment of 0,894 427, that might be encountered in practice 

in cases when the population was thought to be synunetric. 12 

X1  and Xp are observations, independently, therefrom, then 

X, + X2 has the chi-square dic»:ribur.ion with 20 degrees of freodem 

.\ 
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whose median is 19.337.    Thus,  the median of the distrlbt'tlon of 

JKXj +X2)    is    9.6685»  that it.   P^Xj + X2)  < 9.6685) - i, 
o 

ond the Wilcoxon center of XIQ 
i8 at 9.^*685. For compnricon, 

the median is 9.6685,  the mode is 8.00, and the expectation 

is 10.0, as illustrated in Figure 4. If we translate the 

^ 

0.1 

y 

Figure 4 

5 

populatlon to bring the V/ilcoxon center to   0,     then 

p - PCX,  - 9.6685 < 0)  ■0.53.    Accordingly, under the null 

hypothesis that the Wilcoxon center is at   0, 

E(W)  - i(n-l).n +0.53 n - ^ n(n+l)(l + ^~p-) 

at n - 10, we get E(W) - 27.8 instead of the desired 27.5. 

Since S.D. (W)  is approximately 9.8526, the discrepancy of 0.3 

in the expected value of W is not especially important, &nd 

it would be even less so as n is Increased above 10. 

The magnituie of tho departure of p from \    in typical 

essen can be assessed by examining the Edgeworth expansion: 

p - P[X1 < raed (i (X1 + X2)) ] - Fz(z) 

« <D(z) - T,3(p(2)(z) + [^^^(z) +i nf«p(5)(s)] 

- [^^(z) +n3-n4«v
(6)(z) +^3<P(8)

(Z)] + ••• 
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2 ■ TXTx^J" • 

In order to determine how far out should one carry for this 

expansion, one needs to examine the value determined in each 

batch ([ ]), which contains terms of the same order of convergence. 

If the value of a certain b^tch is small compared to the sum of 

the previous terms, one need not go any further. To illustrate 

2 
tills point, let us work out, for example, Xin with n - 10: 

z - -0.074 126 

wher'i the sum of the first 4 terms sum up to 0.329 918* Adding 

in the next three terms will give p * 0.330 418. For our purpose, 

p • 0.53 will serve. 

Let us now return to the robustness question. Suppose \;e 

have been given a specific asyinmetric distribution, and h.ive 

translated it to bring the Wilcoxon center to 0. This will make 

q.- £ and will yield a specific value of p. Accordingly, for 

n %i\ren  sample size,  E(W)  is determined. We may therefore Apply 

the average-probability method to yield an approximating distribu- 

tion P^. Therefore, we have in P., a one-parametor family of 

O'.rtributions determined by the parameter r.t    By the formulas 

of Section 4, we can calculate Var(W)  and ^(V/). This permits 

th3 refinement of P^ to P4, and a third-moment check on the 

eJequacy of the P. approximation. 
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p 
We have cnrrled out this process for the XIQ exemplo, for 

n - 10: 

E(W) - (.249966 (n-1) + .529958) • (n) - 27.8 

Var(W) - [{.08W7 (n-2)   f .375899) (n-1)  + .249103]«n 

- 97.0735 

n3(W) - {[{.009280  (n-3)  + .037334) (n-2)  - .000113] 

.  (n-1)  - .014925)  • n 

- 73.49325 

with standardized third moment   0.076842.    We also found by the 

average-probability method, 

L(0)  - -7.550 226, L(55)  - -6.348 783 

aj^ - 0.021 844 418,   a2 - -.000 00? 4499, 

a3 - -.000' 037 473 2, b2 « 28.32399 

a^ -.000 OOO 018 749, b4 - 19.33199,  c4 - 36.44021. 

Table 8 shows excerpts of the P.-cumulative. At a first glnnce 

at some of the values shown, say. If you will reject If W « 9, 

then the significance probability shown by this approximation Is 

2.557'^ , where the nominal value given by the null distribution 

is 3,223$»    This does nor sound too appealing. 

However, It is amazing how good the result will be, if one 

is dring a two-tailed test. For example, if one is willing to 

reject if W ^ 9 or W i 46, the nominal value will give 6.'i46^, 

HMM ■MM 
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and th« •IgnlflcAnc« probability will add up Co 6.609$. The 

reason that neither of the one-tailed tost Is too encouraging Is 

2 
due to the skewness based on this asymmetry distribution Xi0» 

But when one Is doing a two-tailed test, the significance prob- 

abilities of both sides seem to balance out. Thus, one may 

conclude that tho robustness property of Uilcoxon test against 

asymmetric distribution owns a much more sound evidence in the 

case of two-tailed test than either tail. 

mmam 
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Table 1 

#(w)   for n - 10 

w #(w)  , w I  #(w) 

0 1  i 14 17 

1 1 15 20 

2 1 16 22 

3 2 17 24 

4 2 18 27 

5 3     : 19 29 

6 4 20 31 

7 5 21 33 

8 6 22 35 

9 8 23 36 

10 10 24 33 

11 11 25 39 

12 13 26 39 

13 15 1  27 40 

1 

28 
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Table 2. #(*) and approximation (2.1)  for n - 20                                 j 

v; 

• 
w#(w) 
approx. w #(w) 

w #(w) 
approx. w #(w) 

w #(w) 
approx. 

?A 75 7S3 51 2131 2129.1 81 10538 10537.7                  1 

22 87 P7.C 52 kSOO 2299.0 82 10864 10864.8 

23 101 102.0 53 2479 2478.0 83 11186 11186.9 

24 117 118.0 54 2668 2666.2 84 11504 11503.0 

25 135 136.0 55 2865 2863.6 85 11812 11812.3 

26 155 156.3 56 3071 3070.3 86 12113 12113.7 

27 178 178.9 57 3288 3266.4 87 12407 12406.3 

28 203 204.2 58 3512 3511.7 88 12689 12689.3 

29 231 232.4 59 3746 3746.2 89 12961 12961.7 

30 263 263.7 60 3991 3989.8 90 13224 13222.6 

31 297 298.3 61 4242 4242.3 91 13471 13471.1                  !   | 

32 335 336.5 62 4503 4503.6 92 13706 13706.4 

33 3 m 378.6 63 4774 4773.4 93 13929 13927.8 

34 424 424.8 64 5051 5051.4 94 14134 14134.5 

35 475 475.5 65 5337 5337.2 95 14326 14325.7 

36 531 530.8 66 5631 5630.6 96 14502 14500.8 

37 591 591.3 67 5930 5931.0 97 14659 i:.C39.1                1 

33 657 657.0 68 6237 6238.0 93 14800 14800.2                j 

39 729 728.3 69 6551 6551.1 99 14925 149^3.6 

40 806 805.6 70 6869 6869.7 100 15029 15028.7                j 

41 889 889.I 71 7192 7193.2 101 15115 15115.2 

42 980 979.2 72 7521 7521.0 102 15184 15182.8                1 

43 1076 1076.0 73 7851 7852.3 103 15231 15231.3                i 

44 1180 13,80.0 74 8185 8186.5 104 15260 15260.4 

45 1293 1291.4 75 8523 8522.8 105 15272 15270.2 

46 1411 141.0.4 76 8059 3860.4 1 
"7 1538 1537.4 77 9197 9198.5 1 

1.674 1672.5 78 9536 9536.1 I 
49 1817 1816.1 79 9871 9372.5 

S [ 

50 1969 1968.2 80 10206 10206.7 m 

■mkM 
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Tabl« 3. Coefficients of first three moments of W 

\, (M) n - 0.25 (.25) 1.50 

coeffK .25 .50 .75 1.00 1.25 1.50 

p .401 293 .291 160 .226 627 .158 655 .096 800 .066 807 

^l .361 835 .234 235 .144 422 .078 650 .037 574 .016 947 

n2l 
.240 257 .206 386 .175 267 .133 484 .087 430 .062. 344 

m22 .347 923 .277 200 .192 104 .115 097 .058 567 .027 476 

"23 .075 340 .056 585 .033 799 .016 881 .006 946 .002 403 

"31 
.04? 430 ,086 203 .095 827 .091 128 .070 504 .054 014                1 

"32 .225 539 .345 618 .333 059 .243 020 .137 157 .070 001 

"33 
.14? 244 .201 906 .173 162 .103 590 .045 998 .017 046 

"34 .019 875 .030 189 .019 515 .009 968 .003 798 .001 058            1 | 

mmm 
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Table 4. Comparison of Klotz's cumulative probabilities 

and normal approximation for Jf(ltl), n - 10, 

together with the error shown for the approximating 

P2, P3 and P4 

//(w) 

Klotz 

P(W a» w) 

10^ x Error of 

M Normal 1 P2 P3 
P4 

0 1 .1777 - 59 0 0 0 

1 1 .2914 -.625 + 45 +38 -2T 

2 1 .3664 - 710 + 84 +70 -47 

3 2 .4700 -1004 +105 +78 -40 

k 2 .5397 - 907 +120 ■»83 -37 

5 3 .6124 - 819 +114 ■»67 -18 

6 4 .6804 - 696 + 85 +31 -17 

7 5 .7379 - 513 + 65 + 5 -37 

8 6 .7847 - 295 + 51 -11 -44 

9 8 .8275 - 127 + 39 -23 -45 

10 10 .8633 +  6 + 34 -27 -36 

11 11 .8914 + 127 + 30 -27 -26 

12 13 .9146 + 199 + 21 -32 -21 

13 15 .9326 + 240 + 18 -29 -11 

l-'l 17 .9476 + 249 + 12 -30 - 6 

15 20 .9600 + 232 + 6 -31 - 4 

16 22 .9693 +  208 + 4 T28 + 1 

17 24 .9764 + 180 + 3 -24 + 6 

13 27 .9822 + 147 + 1 -21 + 7 

19 29 .9866 + 118 0 -18 + 9 
20 31 .9899 + 93 0 -15 + 9 

tmomm 
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Table 5.    Given n - 10 

p •2 E(W) 
• 

b3 82 - b;.8l 

.02500 -.01634063 .31381 1.83707 22.15959 

.05000 -.00904215 .79815 2.97823 I69.80828 

.07500 -.00579759 1.47716 4.28975 620.71346 

.10000 -.00100116 2.34955 5.68875 1562.50147 

.12500 -.00288598 3.39762 7.11726 3122.03702 

.15000 -.00214043 4.59610 8.54549 5343.75854 

.17500 -.00161469 5.91989 9.96180 8200.59779 

.20000 -.00122953 7.34483 11.36261 11609.44424 

.22500 -.000939^0 8.84901 12.74807 15449.32008 

.25000 -.00071599 10.41587 14.12031 19581.89779 

.27500 -.00054129 12.03147 15.48157 23859.44368 

.30000 -.00010333 13.68448 16.63394 28134.12860 

.32500 -.00029388 15.36601 18.17928 32264.89875 

.35000 -.00020715 17.06903 19.51912 36121.49424 

.37500 -.00013905 I8.78805 20.85475 39587.65504 

.40000 -.00008661 20.51871 22.18717 42562.86995 

.U2500 -.00004772 22.25764 23.51725 44963.98652 

.45000 -.00002075 21.00459 24.84574 46729.73432 

.47500 -.00000517 25.75043 26.17310 47801.99147 
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Table 6.    The cunuUtlve probeblllclee of approximating 

P. and P4 fron ^0.73, 1) with   n - 20 

#(v) P3(W < w) P4(W < w) 

0 1 .0059 .0059 

1 1 .0109 .0109 

2 1 .0153 .0153 

3 2 .0230 .0229 

4 2 .0296 .0295 

5 3 .0382 .0381 

6 4 .0481 .0480 

7 5 .0589 .0587 

8 6 .0701 .0699 

9 8 .0831 .0828 

10 10 .0972 .0968 

11 12 .1119 .1113 

12 15 .1278 .1272 

13 18 .1444 .1437 

Ik 22 .1620 .1611 

15 27 .1807 .1798 

16 32 ..2000 .1990 

17 33 .2200 .2188 

18 46 .2409 .2397 

19 5^ .2623 .2610 

20 64 .2343 .2829 

,t MMM 
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Table 7. Bccerpt of Ch« cumulatlv« probabllltlet of th« 

«pproxiflMting P. «nd P^ from Tukey«» model—« blend of 

0,97 from/(1,1) «nd 0.03 fromcXi, ); n - 10 

w #(w) P3(W * w) 

.1629 

P4(W Ä w) 

0 1 .1629 

1 1 .2707 .2687 

2 1 .3426 .3387 

3 2 .4396 .4330 

4 2 .5055 .4973 

5 3 .5734 .5642 

6 4 .6360 .6266 

7 5 .6906 .6818 

8 6 .7367 .7291 

9 8 .7803 .7744 

10 10 .8192 .8154 

26 39 .9952 .9977 

27 40 .9964 .9984 

26 40 .9973 .9989 

29 39 .9980 .9993 

30 39 .9985 .9995 

31 38 .9989 .9997 

32 36 .9992 .9998 

33 35 .9994 .9999 

34 33 .9996 .9999 

35 31 .9997 1.0000 

^mum —m 
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Table 8.    P.-cumulative of Wllcoxon 

dletrlbution from x10 with n • 10 

w N(W) P^-cum W N(W) Pfc-cum 

0 1 .0005260 40 20 .8928811 

1 1 .0010943 41 17 .9094992 

2 1 .0017046 42 15 .9243857 

3 2 .0030076 43 13 .9375258                          . 

4 2 .0043908 44 11 .9488886 

5 3 .0065813 45 10 .9594839 

6 4 .0096488 46 8 .9682115 

7 5 .0136563 47 6 .9749787 

8 6 .OI86585 ■'+8 5 .9808340 

9 8 .0255651 49 4 .9857195 

10 10 .0344671 50 3 .9895591                         , 

11 11 .0445238 51 2 .9922548 

12 13 .0566837 52 2 .9951082 

13 15 .0709878 53 1 .9966265 

14 17 .0874601 54 1 .9982513 

15 20 . 1070904 55 1 1.0000000 
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